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We analyze different mechanisms of entropy production in statistical mechanics, 
and propose lbrmulas for the entropy production rate e(lt) in a state i t. When 
It is a steady state describing the long term behavior of a system we show that 
e(lt ) >_. O, and sometimes we can prove e(it) > O, 
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INTRODUCTION 

The study of nonequilibrium statistical mechanics leads naturally to the 
introduction of nonequilibrium states. These are probability measures It on 
the phase space of the system, suitably chosen and stationary (in principle) 
under the nonequilibrium time evolution. In the present paper we analyze 
the entropy production e(~t) for such nonequilibrium states, and show that 
it is positive (more precisely t>0, sometimes one can prove >0). That the 
positivity of e(gl) needs a proof was repeatedly pointed out by G. Gallavotti 
and E, G. D. Cohen. 2 Here we shall emphasize the physics of the problem 
and be particularly concerned with a proper choice of mathematical 
framework and definitions; the proof that e(it)>10 will then be relatively 
easy. 

IHES, 91440 Bures sur Yvette, France, and Mathematics  Department,  Rutgers University, 
New Brunswick, New Jersey 08903. 

2 In their seminal paper, ~ls~ for instance, they state, "positivity rests on numerical evidence," 
and refer to ref. 12. 
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2 Ruelle 

T h e r m o s t a t t i n g  

We shall think of a physical system having a finite (possibly large) 
number of degrees of freedom. The phase space 5 e is thus a finite-dimen- 
sional manifold, with a symplectic structure and therefore a natural volume 
element. In the situation of equilibrium statistical mechanics there are con- 
servative forces acting on the system. A Hamiltonian H is thus defined 
on 5 p, and energy is conserved, i.e., time evolution is restricted to an energy 
shell ~ =  {x: H(x) = E} of ~ ,  where E typically ranges from some lower 
bound E o to + ~ (this is because the potential energy is >~E o and the 
kinetic energy takes all values ~>0). While ,9 ~ is noncompact and has 
infinite volume, 5e E is compact and has finite volume. 

In the case of nonequilibrium statistical mechanics we have nonconser- 
vative forces and, although we may be able to define a natural energy 
function, with values in [ Eo, + oo }, the energy is in general not conserved. 
Typically the point representing the system wanders away to infinity in the 
noncompact phase space 5e while the system heats up, i.e., its energy tends 
to + ~ .  In this situation it is not possible to define time averages corre- 
sponding to a probability measure on ,9 ~ i.e., it is not possible to introduce 
nonequilibrium states. This difficulty follows from the noncompactness of 
phase space and is not tied to the special physical meaning of the energy. 
(The same difficulty arises in diffusion problems where the energy is 
constant but the configuration space is infinite). 

Physically, the way to avoid heating up the system is to put it in 
contact with a thermostat. One can idealize the thermostat as a random 
interaction (with a heat bath). The study of entropy production remains to 
be done in this framework, and should separate the randomness (or 
entropy) introduced by the thermostat and that created by the system itself. 

It is also possible to constrain the time evolution by brute force to 
some compact manifold M c S. Consider, for instance, a system satisfying 
Hamiltonian equations of motion: 

)(=J OxH 

where X = ( p ,  q) and JOx=(-Oq, Or). The energy is conserved because 
I:I= OxH..~= OxH. J OxH= O. Let us add an external driving term F so 
that the time evolution is now 

,f(= J OxH + F(X) 

This will in general heat up the system because 

I:I=OxH. f(=axH. F( X) r 
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but if we replace F by 

(OH. F) 
F -  

(014. OH) 
�9 O H  

then H is preserved: this is the so-called Gaussian thbrmostat. ~8~ 
To summarize, we want to act on our system to keep it outside of equi- 

librium, but also impose a thermostat to prevent heating. Physically this 
means that we pump entropy out of the system, while keeping the energy fixed. 

From now on we shall consider a time evolution on a compact 
manifold M. We shall forget the symplectic structure (this is no longer rele- 
vant because we no longer have a Hamiltonian). We shall, however, need 
the volume element d.x to define the statistical mechanical entropy 
S ( p ) = - ~ d x _ p ( x )  log p(x) of a probability density _p on M. Equivalent 
volume elements will be equivalent for our purposes because changing dx 
to ~b(x) dx replaces S(p) by S(p) + I  dx_p(x) log q~(x); the additive term is 
bounded independently of p, and will play no significant role in our con- 
siderations. We may thus take for dx the volume element associated with 
any Riemann metric. Note that S(p) is the physical entropy when _p is a 
thermodynamic equilibrium state, but we can extend the definition to 
arbitrary _p such that S(p) is finite. 

The fact that we take seriously the expression S ( p ) = - I d x p ( x )  
log p(x) for the entropy seems to be at variance with the point of view 
defended by Lebowitz, ~2~ who prefers to give physical meaning to a 
Boltzmann entropy different from S(p). There is, however, no necessary 
contradiction between the two points of view, which correspond to 
idealizations of different physical situations. Specifically, Lebowitz discusses 
the entropy of states which are locally close to equilibrium, while here we 
analyze entropy production for certain particular steady states (which may 
be far from equilibrium). 

Pumping Entropy Out of the System 

We have now reduced our mathematical framework to a smooth time 
evolution on a compact manifold M. We may also discretize the time 
(using a time one map f o r  a Poincar~ first return map f )  and consider that 
the time evolution is given by iterates o f f :  M ~ M. Even though the math- 
ematical setup is now just that of a smooth dynamical system (M, f ) ,  there 
remains the problem to study how entropy is pumped out of the system, 
and how nonequilibrium states are defined. We shall consider three cases. 

(i) f is a diffeomorphism (hence j . - i  is defined). Nonequilibrium 
states lL may be defined by time averages corresponding to orbits (fkx), 
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where x ~ r and )~'- has positive Riemann volume: vol .//-(it)> 0. More 
precisely, let 3(:,) denote the unit mass at x; we may say that it is a non- 
equilibrium state i f / t  ' " ' - ]  = l t m  . . . .  (1/m)~r2k=o ~( fka)  for all x ~ ' / " ( p ) ,  and 
"~'-(lt) > 0; special examples are the so-called SRB states. We shall see that 
entropy is pumped out of It because f contracts volume elements (in the 
average). 3 

(ii) f is an noninvertible map. Here the folding of the phase space 
caused by f a c t s  to pump entropy out of the system. 4 Nonequilibrium states 
may be defined as limits of states ( l /m)Z~'_21f~p with p absolutely con- 
tinuous with respect to the volume. 

(iii) f h a s  a nonattracting set A which carries a nonequilibrium state 
It associated with a diffusion process. (~7"1~ Specifically, let A be an 
f-invariant  subset of M which is not attracting. If U is a small neighborhood 
of A, ./'Uis not contained in U. Let p be the Riemann volume normalized 
to U. Then fp  is not supported in U. We multiply by the characteristic 
function of U and normalize to obtain a new probability measure P l = 
IIx c ,  f p l l - l z ,  g fp.  Iterating this process 177 times, we obtain p .... and define 

n ;  

p(.,) 1 ~ "-k 
= - -  .l P,,, 

171 k = 1 

In the Axiom A case we shall see (Section 3 below) that p("') tends to an 
f-invariant  probability measure / t  giving to the quantity fh(/t - ~  positive 
Lyapunov exponents o f / t ]  its maximum value P (h is the Kolmogorov- 
Sinai entropy and the pressure P is >/0). One can argue (see, refs. 19 and 
1 1, and below) that the volume of the points x e U such that f x  ..... f " ' x  s U 
behaves like e "'e. Here again entropy is pumped out of the system by 
getting rid of the part  of fp  outside of U, and /t may be interpreted as 
nonequilibrium state. 

For a recent physically oriented review of nonequilibrium statistical 
mechanics we refer the reader to Dorfman. c91 He discusses in particular 
calculations using periodic orbits, as advocated by Cvitanovi8 et al.. (8" i1 

Toward Physical Applications 

The ergodic hypothesis states that the Liouville measure restricted to 
an energy shell 6~E (for a Hamiltonian system) is ergodic under time evolu- 
tion. This serves to justify the ensembles of statistical mechanics and, while 
the ergodic hypothesis is likely to be false in general, it is apparently almost 

3 See refs. 5 and 6 for models with phase space contraction. 
4A model with folding of phase space has been considered by Chernov and Lebowitz? 71 
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true in the sense that the application of equilibrium statistical mechanics to 
real systems has been extremely successful. 

One may try to base nonequilibrium statistical mechanics on a 
principle similar to the ergodic hypothesis. Here one assumes that the 
dynamical system (M, f )  describing time evolution ,is hyperbolic in some 
sense s and that time averages are given by particular probability measures 
called SRB measures; these are the nonequilibrium states which replace the 
microcanonical ensemble of equilibrium statistical mechanics. The SRB 
states correspond to time averages for a set of positive measure of initial 
conditions. They are characterized by smoothness along unstable directions 
or equivalently by a variational principle. 6 

The assumption that the systems of nonequilibrium statistical 
mechanics are hyperbolic and described by SRB measures is unlikely to be 
exactly true, but it is reasonable to expect that it is approximately true in 
the sense that it gives correct physical predictions in the limit of large 
systems (thermodynamic limit). 

Actual physical predictions were obtained only after Gallavotti and 
Cohen ~5~ supplemented the hyperbolicity assumption by the reversibility 
assumption. The latter assumes that there is a map i: M~--,M such that 
i ~ - = l , f i = ( f  - t .  

The chaotic hypothesis of Gallavotti and Cohen ~s'~6~ (see also 
Gallavottp~3, ~4~) states that physically correct results (for nonequilibrium 
systems in the thermodynamic limit) will be obtained by assuming 
reversibility and treating the system as if it were hyperbolic (in fact 
Anosov). An essential role in the inspiration of Gallavotti and Cohen was 
played by the numerical results and analysis by Evans et al. ~:-~ 

Example  

Consider a Hamiltonian H(X)=�89 M-~p)+ U(q) where M is the 
mass matrix and U is the potential energy. We denote by f ' X  (with 
f ~  the solution of Hamilton's equation X=JaxH.  Defining 

5 See Eckmann and Ruelle q~ for definitions and a physically oriented review of dynamical 
systems. 

6 The approach just indicated to the study of nonequilibrium systems was advocated early in 
lectures by the present author (G. Gallavotti mentions the date of 1973); for the case of 
turbulence se ref. 24. Other people familiar with SRB measures would have had similar ideas, 
but these have started to be useful only with the recent (1995) word of Gallavotti and 
Cohen) ts'16~ The mathematical study of SRB states was made by Sinai ~26~ for Asonov 
diffeomorphisnas, Ruelle t23~ for Axiom A diffeomorphisms, and Bowen and Ruelle TM for 
Axiom A flows. The very nontrivial extension to nonuniformly hyperbolic systems is due to 
Ledrappier and Young) -'-'~ 
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i - - !  i(p, q ) = ( - p ,  q), we find that f ' i =  f , which expresses reversibility. 
Reversibility is preserved if we introduce an external force F = ( ~ ( q ) ,  0), 
and again if we add a Gaussian thermostat. 

Scope of the Paper 

In what follows we shall analyze entropy production and its positivity 
for the three cases outlined earlier: (i) diffeomorphism, (ii) noninvertible 
map, (iii) map near a nonattracting set. The treatment of these three cases 
will be somewhat uneven because the existing mathematical results range 
from detailed in case (i) to rather limited in case (iii). Since the emphasis 
of this paper is on having the physics straight, we allow the uneven mathe- 
matical treatment, but suggested some conjectural extensions of the results 
that are proved. The possibility of a unified presentation will depend on 
further progress in the ergodic theory of differentiable dynamical systems. 

1. ENTROPY PRODUCTION FOR D I F F E O M O R P H I S M S  

Let M be a compact manifold and .f: M~--~ M a C ~ diffeomorphism. 
Choosing a Riemann metric on M, let p(du be a probability 
measure with density p with respect to the Riemann volume element dx. 
The direct image P l = J,o has density pl(x) = p ( f -  l x ) / J ( f -  Ix), where J(X) 
is the absolute value of the Jacobian o f f  at x (computed with respect to 
the Riemann metric). The statistical mechanical entropy associated with 
p is 

S(_p ) = - f dx _p( x ) log_p(x) 

[This means that dx is interpreted as the phase space volume element; if 
dx is the configuration space volume element, then S(_p) is the configura- 
tional entropy.] The entropy S(p) will have to be distinguished from the 
Kolmogorov-Sinai (time) entropy h(lt) of an f invar ian t  state I~ used 
below. The entropy associated with p~ is 

dx p~(y) log p)(y) S(pl) = - .  _ 

p(.f -~y) 
= --f  dy j ( j , _  ly} [log p(f-1) : )  _ log J ( f -~y ) ]  

= - f  dxp(x)[ logp(x)  - l o g  J(x)] 
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The entropy put into the systems in one time step is thus 

S(pl)  -- S(8) = f dx p(x) log J(x) 

This means that the entropy pumped out of the system, or produced by the 
system, is 

- f  dx_p(x) log J(x) 

Let p,, be the density of the measure p,,-- f "p .  If p,,, tends vaguely 7 to it 
when m --+ or, the entropy production 

- [ S(_p,, ,  + 1) - S ( p , , , ) ]  = - f  dx p.,(x) l o g  J(x) 

tends to 

-- f /l(dx) log J(x) 

It is thus natural to take as definition of the entropy production for an 
arbitrary f i n v a r i a n t  probability measure ll the expression 

er(/L) = - f  lt(dx) log J(x) 

In the rest of this Section we take /t to be ergodic, so that the 
Lyapunov exponents are constant (/l-a.e.). The general case is obtained by 
representing/~ as an integral over its ergodic components. 

Lemma 1.1. The entropy production er(it) is independent of the 
choice of Riemann metric and equal to minus the sum of the Lyapunov 
exponents of/L with respect to f 

Proof. This follows from the Oseledec multiplicative ergodic theorem 
in the form given in ref. 11. | 

7 The vague topology is the w*-topology on the space of measures considered as dual of the 
space of continuous functions. We denote a vague limit by v.lim. 
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We remind the reader that the Kolmogorov-Sinai entropy h(p) is the 
amount of information produced by f in the state It (see, for instance, 
Billingsley. ('-) We always have 

(this inequality 
measure (22" ~) if 

h(p) ~< ~ positive Lyapunov exponents 

is due to Ruelle; see ref. 11). We call It an 

(1.I) 

SRB 

h(it ) = )-" positive Lyapunov exponents ( 1.2 ) 

(Pesin identiO,). I f . / i s  of class C 2, the above condition is equivalent to p 
having conditional probabilities on unstable manifolds absolutely con- 
tinuous with respect to Lebesgue measureJ 221 If f is C 2 and p has no 
vanishing Lyapunov exponent, then there is a set of positive Riemann 

1 N  N-I volume of points . v~M with time averages ( / )Y~k=o 5(.f~x) tending 
vaguely to p (this result is due to Pugh and Shub; see ref. 11). 

T h e o r e m  1,2. Let f be a C ~ diffeomorphism and p an f-invariant 
probability measure on the compact manifold M. 

(a) If It is an SRB measure then el(p)>~ 0. 

(b) Let f b e  C ~+" with ~ > 0  and it be an SRB measure. I f p  is 
singular with respect to dx and has no vanishing Lyapunov exponent, then 
e r ( l t  ) > O. 

(c) For every a 

-- log J ( fkx)  ~< vol M vol{x:  1 " ~ '  >ja} e ..... 
D 1  k = 0 

In particular, if r  {x: v.lim . . . . . .  ( 1 / m ) ~ , = 0  x~ .... i 6 ( fkx )= l t }  and 
er(p) < 0, then vol r  = 0. 

Proof.. We have denoted by vol the Riemann volume in M. In view 
of the result of Pugh and Shub mentioned above, (a) follows from (c) i f f  
is C'- and it has no zero characteristic exponent. Here is a direct proof of 
(a): i fp  is SRB, we have 

er(p) = - ~  Lyapunov exponents 

= [ h(p) - ~. positive Lyapunov exponents] 

- [ h(p) + ~, negative Lyapunov exponents 
l 
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=Ih(p)-~positiveLyapunovexponentsw.r.t. f l  

-[h(,t)-~positiveLyapunovexponentsw.r.t.f-'] 

>~0 

where we have used (1.1) and (1.2). 
To prove (b), notice that ifp is SRB and e r (p )=0 ,  then, according 

to (a), 

h(p) = ~ positive Lyapunov exponents 

= - ~  negative Lyapunov exponents 

This implies that it is absolutely continuous with respect to dx [see 
Ledrappier ~2~1 Corollary (5.6)] if f is a class C ~ +~ and It has no vanishing 
Lyapunov exponent. 

To prove (c), write 

We have thus 

) r  x : - -  logJ(fAx)>~a 
I?1 k ~ O  

n t -  1 

vol M >~ vol.f" '~"(m) = f 1--[ J(.f kx) dx 
r k = O  

as announded. I 

Corollary 1.3. 
f -  1, then e/(P) = 0. 

>~e ..... vol r  

If At is an SRB measure with respect to both f and 

Proof We have indeed e/.(p)>~o, and et-,(p)=-er(p)>~O. (As 
pointed out to the author by Joel Lebowitz. this covers the case of the 
microcanonical ensemble). | 

2. E N T R O P Y  P R O D U C T I O N  FOR N O N I N V E R T I B L E  M A P S  

2.1. Standing Assumptions 

Let M be a compact Riemann manifold, possibly with boundary. We 
denote by vol the Riemann volume and by dx the volume element. We 
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assume that a closed set Z c M is given, containing the boundary of M, 
and f :  M\Z--*  M such that the following properties are satisfied: 

(A1) vol Z - - 0 .  

(A2) There are disjoint open sets D~ . . . . .  O x such that M \ Z =  
U~'= ~ D,,  and .flD~ is a homeomorphism to fD~, absolutely continuous 
with respect to vol. The Jacobian J of) ' i s  continuous in M\s and satisfies 

inf J(x)>~e-t">O 
xr 

(A31 For all pairs (~, [3), fD~ and JDIj are either disjoint or identical. 

2.2. Comments 

It is convenient to use a map J' defined outside of an exchtded set Z'. 
In particular this allows discontinuities on Z'. When considering the direct 
image)Q of a measure p ~>0 on M by f,  we shall have to assume that 
It(Z)---0. (We have made such an assumption for the measure vol.) 

Condition (A3) might seem very strong, but can be arranged to hold 
under the weaker assumption 

vol(./D~ n Of D a) = 0 

for all pairs (~, [3). Let indeed (DI.) be the family of open sets N~-'= t (JD~)-, 
where (fD~)" is either JD~ or M\c los  fD~ for each ~. Let D~*;.= 
D~ .-i  l X* * n J  D~. and =M\U~U;.D~.~.,  then (A1)-(A3) hold when s 
(D~) are replaced by s (D*;,). When considering the direct image J)t, we 
shall now have to assume that p(s =0.  

2.3. Refining (Do) 

Le t . /D~  = DI,. We may  wr i te  

D !  = L'!, • D  I D l 
.. y l  g " ' '  g 7n 

where vol X!, = 0 and the disjoint open sets DI, I ..... DI, . are small. Writing 
D~i= D~ n / - I D i  .. ~,i, we may replace (D~) by a family (D~) of arbitrarily 
small sets. In other words we may refine the family (D~) to a new family 
(D*) (with ~ { 1  ..... N*} and an excluded set s so that (A1)-(A3) still 
hold and the sets D* are arbitrarily small. 

In the study of a measure it>>- with / t ( s  we can arrange that 
f (g  )(Z'l,) = 0, implying that p(X*) = O. 
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2.4. Folding Entropy 

Let ll be a positive measure on M \ X .  [We  may also consider I~ as a 
positive measure on M such that  i t ( Z ) =  0.] Our  assumptions imply that 
there is a disintegration of  it associated with the map f (see Bourbaki  ~3~ 
paragraph  3). In general this means that we have the integral repre- 
sentation 

el = I l l t (dx)v, .  

where II ~ =.flt  is the direct image of  Is by )'~ and v.,. is a probabil i ty measure 
with v , . ( f -~{x}  ) =  1. This representat ion is essentially unique. Here we 
may assume that  it,. is a tomic (with at most  N atoms) and write 

H(v,.) = - - ~  p~ log p~ 
~t 

where the p~ are the masses of the atoms of v.,.. [ In  the general case we 
would write H(v., .)= + m  if v.,. is nonatomic . ]  We let now 

F(It) = Ff(Ft) = j ' l t l (dx)  H(v,.) 

and call F(it) the folding entropy of It with respect to f 
Let again D~ = JD~. By the concavity of t ~ - t log t, we have ), 

[ ~. ll(D~) log :L(D.) (ll l(D!,))- i , ,( ,r H( , , , - )  - I , , ( D I . )  ' ;. " :~: ~.(~) =;. l t 1( 

Therefore,  when (D~) is replaced by (D*), which consists of smaller and 
smaller sets, the expression 

F * ( I , ) = ~ , / , , ( D * ' ) [ - -  ~ I t (D*) , I , (D*) ] 

tends to F(Fl)= I IL t (dx)H(v, . )  from above. 

Prol~os i t ion  2.1.  Let P be the set of probabil i ty measures on M 
with the vague topology and 

I =  {It e P: It is f - invariant  } 

P,,z = {ll~ P: ll(Z') = O} 

I\z- ---- I c~ P\z- 
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(a) The function F: P\x~-+ R (with values in [0, log N]) is concave 
upper semicontinuous (u.s.c.). 

(b) The restriction of F to I\,_- is affine u.s.c. 

P r o o f  Since H(v.,.) takes values in [0,1ogN],  so does F. To 
prove concavity, we have to estimate F at It', lt", and It = ( 1 - t) it' + tlt", 
with I t ' , l t " ~ P \ r .  We may choose (D*) arbitrarily fine so that 
i d ( X * ) = l t " ( X * ) = O ;  therefore F ( i t ) = l i m F * ( i t ) ,  F ( l d ) = l i m F * ( l { ) ,  
F ( l t " ) = l i m F * ( l t " ) .  Concavity of F follows from the concavity of 
t ~ F*(( 1 - t) lt' + tit"), or the convexity of 

t F . _ . ~ Z [ ( l _ t ) u ~ + t v ~ ]  1 . ( l _ - t ) u ~ + t t , ~  
og y~/~( ( I - t) u/~ + tt,/j) 

Since P is metrizable (with the vague topology), we prove upper semi- 
continuity of F by showing that if pU,,), It ~P\,_~ and if the sequence (pU,,)) 
tends to it, then F ( l t ) ~  lira F(pU")). We may choose (D*) arbitrarily fine so 
t h a t / I ( Z * ) = 0  and p U " ) ( Z * ) = 0  for all m; F(lt) and F(p  u''~) are thus limits 
of F*(l t )  and F*(pU"q.  Since/~(2"*)=pU")(X*)=0, F* is continuous for 
the vague topology on the set S = {lt} u { p'"": m E N}, and F] S is thus the 
limit of a decreasing family of continuous functions, hence upper semi- 
continuous. 

This proves (a). 
To prove (b) we remark that lt', t t" are absolutely continuous with 

respect to it = ( 1 - t) It' + tlt" (if t 4: 0, 1 ) and let g' = 6lt'/c~it, g" = ~l{'/61t. If 
it', it" E I, the functions g', g" are f-invariant. Therefore 

ld(dy)  = (g'It)(dy) = g'( y ) l l (dy)  = I l t , (dx )  g'( y)  v.,.(dy) 

-- g ' ( . , - ) , , . (+)= f (g'i,), 

= J'i6(dx)~,.,.(dv) 

and similarly for g"ll. Therefore 

(I -- t) F ( i t ' )+  tF( l t " )= (I -- t) J" it'~(d'c) H(v.,.) + t f lt'((dx) H(v,.) 

= f It i(d-u H(v.,.)= F(/t) 

This completes the proof of the proposition. I 
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2.5. Extension 

If P denotes the set of positive measures on M (rather than the 
probability measures), we have 

F(lt) ~ [0, log N ] .  IIg~ll 

Apart from that, the above proposition remains true, with the same proof. 
In fact, since F()4t)=2F(It) for 2>_-0, it...>O, lt(X)=O, the extension of F 
from probability measures to positive measures is trivial. 

2.6. En t ropy  Product ion  

We define now the entropy production er(l t) for a dynamical system 
( M , f )  satisfying our standing assumptions and l t~P\ , -  [i.e., It is a 
probability measure such that l l(L')= 0]. We write 

e r ( l t  ) = F ( l t  ) - lt(log J) 

This definition will be motivated below, first when It is defined by a density, 
then more generally. 

Proposition 2,2. (a) er(gt) is independent of the choice of 
Riemann metric on M. 

(b) er is concave u.s.c, on P\~, and affine u.s.c, on I\_,.. 

(c) If the probability measures p~"'~ are absolutely continuous with 
respect to Riemann volume and tend vaguely to it ~ P\z-, we have 

lim sup e r (  P~"'~) <<-er(lt) 

Proof. A change of Riemann metric replaces J by J +  q~-q5 ,J~ so 
that it(log J) and er(ll) are not changed. This proves (a). 

The function K +  log J is ~>0 and continuous on M\Z'.  Let (X,,) be an 
increasing sequence of continuous functions Mw-~ [0, 1], vanishing on X 
and tending to 1 on M\Z'.  Then ( (K+  log J)"Z,,) is an increasing sequence 
of continuous positive functions tending to K + l o g  J on on M\Z'.  
Therefore 

It ~ It(K + log J) = K + It( log J) 
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is affine l.s.c, on P\z,  and 

It ~ - / t ( log  J) 

is affine u.s.c, on P\• Together with Proposition 2.1, this proves (b). 
To prove (c) we note that, since v o l X = 0 ,  we have p '"~(s It 

suffices then to apply (b). II 

2.7. En t ropy  Assoc ia ted  w i t h  a Dens i ty  

Let p be a probability measure with density p with respect to Riemann 
volume, i.e., p ( d x ) = p ( x ) d x .  If dx is interpreted as phase space volume 
element, the statistical mechanical entropy associated with p is 

S(_p) = - I  dx p(x) log p(x) 

Using the concavity of the log, we have 

1 I dx p(x) S(_p ) = I - p(x) log ~ ~ log " -p (x )  = log vol M (2.1) 

so that S(.) takes values in [ - w ,  logvo lM] ,  the value - m  being 
allowed. 

If I/G is the inverse of./'[D=, the direct image p~ = f o  has density 

p,---Y.Ip ,/,~)-(Y G)  

where J =  1/d, and characteristic functions of the sets fD= have been 
omitted. Define 

1 
P~ -p,(.v)_P(G-v) (JG) 

v,. = ~ p~(x) ~(,/,~x) 

where O(.v) denotes the unit mass at x. Note that.fi,.,.=g(x). We have the 
disintegration 

p = f dx pl(x) v.,. (2.2) 
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and therefore 
/. 

F( p) = J dx _p t(x) H(v.,.) (2.3) 

Note also the identity s 

log_pdx) = -~', p~(xl log p~(x) 
~t 

+ )-" p~(x)[ log p(q,~x) + log ](Lb~x)] 

= H(v.,.) + v,.(log p) + v,.(log ]) 

Therefore, using (2.3) and (2.2), we have 

-S(pl)  = f dx_pdx) log_pl(x) 

+ J" dxpl(x) v.,.(log 3) 

= F(p) + p(log _p ) + p( log ])  

and, if S ( p ) =  -p(log_p) is # - ~ . ,  

- [ S ( _ p ~ ) -  S(_p)]  = F(p} + p(log ])  ( 2 . 4 )  

The right-hand side has values ~<log N + K ,  so that S(pl)r  cc when 
S(p) 4: -oc,. 

Proposit ion 2.3. Let S(_p) :~ - ~ .  

(a) The entropy production associated with the density p is 

- [S(_p,  ) - S ( p ) ]  = F ( p )  + p ( l o g  J )  = e c ( p )  

We are applying tile formnla (familiar in equilibrium statistical mechanics) 

log ~ e-~,,i, = _ y "  Pi l o g / ' , -  '~ P~ U(i) 
i i i 

with Pi = e - t.,t,)/x~ i e - t_,l i). 
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(b) If the probability measures p("') are absolutely continuous with 
respect to Riemann volume and tend vaguely to It such that l t (Z)= 0, we 
have 

er(Jt) >1 lim sup[ --S(p(l "')) + S(_p('"))] 
i n  ~ 

Proof Part (a) follows from (2.4); (b) follows from (a) and Proposi- 
tion 2.2(c). | 

2.8. Physical Discussion 

The above proposition is our justification to define er(it) as the 
entropy production associated with it E P\z.  Note that the definition of 
er(lt) depends only on It and f and not on the choice of an approximation 
of it by absolutely continuous measures i t " .  However, we only have the 
inequality 

er(It) = F(lt) + lt(log J) ~> lim sup[ F(p (''')) + p'"')(log J)] 
m ~ zr  

where one might hope for an inequality. The term It(log a v) poses no serious 
problem in this respect: if we assume that log ] is bounded, we have 

lt(log J) = lim p("')(log J) 

For the term F(p) there might, however, be a discontinuity of F at/t .  What 
this means is that some mass of p ' "  gets folded more in the limit p"") ~ lt. 
For instance, f might be injective on supp p"'" but not on suppp it; this 
would give F(p '')) =0,  but possibly F(gt)>0. 

Physically one should only think of It as an idealization of p ' "  for 
large m. When the map f " f o l d s  together" some mass of p, it almost folds 
together the corresponding mass of p"'" and, in a coarse-grained descrip- 
tion, it thus makes sense to replace F(p (''~) by F(jt) and to interpret the 
latter as the physical folding entropy of our system. 

Take p("')= f" 'p  and suppose that p("')-'+It ~ I\z.  In the step between 
time m and time m + 1, the entropy production is 

_ S(_p(,,, + 11) + S(_pIm)) = F(p(,,,i) + pO,,)(log j )  

which we approximate by F(lt)+p(logJ).  This seems to mean that S(lt) 
increases by a fixed amount at each time step, which is absurd since ~ does 
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not depend on time. In fact, typically, p is singular, i.e., its density p does 
not exist, and we should write S ( p ) =  - m .  We shall argue later that the 
entropy production is positive; the system produces this entropy by having 
its own entropy S(p ~"'~) decrease toward - ~  when m--* o~. The entropy 
produced is absorbed (or transfered to the outside world) by the time 
evolution f (i.e., by the forces which cause the time evolution). 

Let p ~ p * 0 denote the action of a stochastic diffusion operator 0 
close to the identity operator. Let us replace the time evolution p ~--,fp by 
the "noisy evolution" p ~ (fp) �9 O. We assume that this stochastic evolu- 
tion has a steady state/.t o tending to It when 0 ~ identity. Here S(llo) is 
finite and we can see that the entropy production is due to the diffusion 
�9 0. We may indeed write 

- s(L~')  + s(~_ ) = s(L~" ) - s(l_L' ) 

where p, p', lt" are the densities associated, respectively, with Po,fPo, and 
(fPo) * O=po. The left hand side in the above formula is our familiar 
expression for the entropy production, and the right-hand side is the 
entropy produced by the diffusion. Let p("') be obtained from p by the 
noisy evolution after m time steps. Because i t~"'~ is smeared as compared 
with p~"')= f"'p, we expect that the folding entropy F(p ~''~) will be close to 
F(po) or F(p). This is further justification for our choice of the definition 
ej.(p) for the entropy production. 

2.9. Posit iv i ty  of Entropy Product ion 

The following result, showing that e1(p)~> 0 for physically reasonable 
p, is close to the results obtained when f is a diffeomorphism. The proof is 
remarkably simple. 

T h e o r e m  2,4. Let It be a probability measure with density p on M. 
If S(p) is finite and i f p  is a vague limit of the measures p~m~=(1/m) 
~'~'-~ofkp when m ~ co, then er(ll) >~0. 

Proof.." By Proposition 2.2(c) and 2.2(b), respectively we have 

ef(p) >1 lim sup e c(p ('')) 
m ~  or2 

n t - -  1 

ef(p(m))> 1 ~ ef(ikP) 
/'T/ k = 0 

822/85/I-2-2 
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Using Proposition 2.3(a), we also have 

Therefore 

m -  1 

er(fkp) = - S(p,,,) + S(p) 
k = 0  

1 
(r(P) I> lim sup --  [ -S(p, , , )  + S(p)]  

t H  

Since - S(_p,,,)/> - log vol M [ by (2.1) above ] we obtain er(p) >~ O. II 

2.10. Al ternate Approach 

Instead of our standing assumption, let us suppose that M is a com- 
pact manifold and f :  M-~ M a C ~ map. One may then conjecture that 

h(p) <~ F(p) + ~. negative Lyapunov exponents 

when p is an f-ergodic probability measure. (If our standing assumptions 
hold a n d f i s  piecewise C l, with p (Z ' )=  0, this can be proved along the lines 
of Ruelle. ~251 For an SRB state p we have 

h ( p ) =  ~ positive Lyapunov exponents 

and our conjecture implies 

(r(P ) = F(p ) - ~ positive Lyapunov exponents 

+ ~ negative Lyapunov exponents 

>t h(p) - ~ positive Lyapunov exponents = 0 

3. ENTROPY PRODUCTION ASSOCIATED WITH DIFFUSION 

Let M be a compact manifold, f :  M--* M a diffeomorphism, and A a 
compact f-invariant subset of M. Given a small open neighborhood U of 
A, we define 

U,,,= {x:fkxe Ufor k = 0  ..... m} 
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Since we do not assume that the set A is attracting, mass will in general 
leak out of U. i.e., vol Um ~ 0 when m ~ ~ .  It is conjectured ~9' ii, ~71, that 
in many cases vol U,, .~e ''e, and the escape rate from A u n d e r f i s  (up to 
change of sign) 

P =  Pat.= sup { h ( p ) - ~  positive 
p E r A 

<~0 

Lyapunov exponents for (p, f )  } 

where 0I.~ is the set off-ergodic probability measures with support in A. 
If )(.,, is the characteristic function of U .... let pt,,,] and * p[,,] be 

given by 

Z,,,(x) dx 
Pt"'l(dx) - vol U,,, 

(f"'pt,,,])(dx) =_p~',,,](x) dx 

Then we may define the entropy production associated 
A a s  

eA= lim 1--[S(_pto])--S(_p~',,,] ] 

with escape from 

(3.1) 

if this limit exists. 
The next proposition deals with the Axiom A case, 9 which is well 

understood mathematically. One may conjecture that results obtained in 
that case hold much more generally, but proofs are lacking at this time. 

Proposition 3.1. Let A be a basic set for the C 2 Axiom A 
diffeomorphism f,  and U,,, P, p[,,,], _pc,,,3 be as above: 

(a) lim ....... ( l /m)  log vol U,,,= P. 

(b) There is a uniquef-ergodic probability measure p on A such that 

h(it) - ~  positive Lyapunov exponents for (lt, f )  = P 

9 Smale's foundational article ~27~ is still a convenient introduction to hyperbolic dynamical 
systems (with the definition of Axiom A diffeomorphisms, basic sets, etc.). For further 
references see ref. 11. 
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(c) Define 
p ( m )  1 " -  1 

= - -  Z f*P[- , ]  
i n k = 0  

Then v-lim p("" =it when m ~ ~ .  

(d) The limit (3.1) defining eA exists, and 

1 
e A = lim - -  [S(_p[o 1) - S(p~,,,2)] = --PAy--It( log J) 

m ~ ~. m 

(where J is the absolute value of  the Jacobian o f f ) .  

Proo f  Part  (a) can readily be extracted from Bowen and Ruelle, ~4) 
where a slightly weaker result is proved (and flows are considered instead 
of  diffeomorphisms).  

If J "  denotes the Jacobian in the unstable direction, log J "  is H61der 
cont inuous on A, and s ince f l  A is topologically transitive, there is a unique 
equil ibrium state i t maximizing h( l t ) - I t ( l og  j.).r proves (b). 

The volume lemma of ref. 4 establishes a close relation between p,,, and 
H. In fact it follows from ref. 4 that any vague limit of  p("" when m ~ 
is absolutely cont inuous with respect to it. Such a limit is also f - invar ian t  
and, since It is ergodic, equal to it. This proves (c). 

Since _pt,,,](x)=Z,,l(X)/vol U.,, we have 

and (a) yields 

We also have 

S(_p[o] - S(_Pt,,,]) = log vol U,,, - log vol Uo 

lim --1 iS(pro] )  - S(Pt , , I )]  = --PAr 
n l ~  ,:r m - 

m - -  1 

S(_pt,,,])- S(_p~,,])= - ~  dx_p,,(x) log I-[ J ( f  kx) 
k = 0  

hence, using (c), 

= - m  I p ( " ' ) ( d x )  log J(x) 

lim 1 --  [ S(_p[, q ) - S(_p ~,,1) ] = - I t ( log  J)  
m ~ ~ D7 

and (d) follows. II 



Entropy in Nonequilibrium Statistical Mechanics 21 

In conclusion, the entropy production eA associated with escape from 
the Axiom A basic set A under f is 

e As(P ) = - Par-  P( log J) 

This may be taken as a definition of ear(p) for all p ~ IA when A is an 
f-invariant set, f is not necessarily an Axiom A diffeomorphism, and I A is the 
set off-invariant probability measures with support in A. Notice that ear(p) :/: 
ei(p) unless PAI= 0; this corresponds to the fact that eAi and e i describe 
different processes of entropy production (they coincide if A is an attracting 
set). It is readily seen that eArn(p) is independent of the choice of Riemann 
metric. Here again we shall prove positivity of the entropy production. 

Proposit ion 3.2. Let It ~ OIA satisfy the following extension of the 
Pesin identity: 

h(p) - ~ positive Lyapunov exponents = PAy 

We have then 

ear(P) >I - Par-' >10 

Proof. We have indeed 

(3.2) 

ear(p) = -h(p) + ~" positive Lyapunov exponents for (It, f )  

- ~  Lyapunov exponents for (p,f)  

= -h(l t )  - ~  negative Lyapunov exponents for (p,f)  

=-[l~r_,(l~)--~positiveLyapunovexponentsfor(p,f-x) 1 

>I --PAr-' 

and (3.2) follows from P4r<~O. II 

Rem.arks. 

(a) Proposition 3.2 holds without restriction, but the interpretation 
of ear(p) as entropy production and of [Par I as escape rate are guaranteed 
only in the Axiom A case. For more general situations such interpretations 
remain conjectural. 

(b) In the Axiom A case ea r (p )=0  implies that Par-' =0,  i.e., A is 
an attractor for f -  t and p is the corresponding SRB measure on A. 
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